Effect of modified damping parameters on AIRS O₃ retrievals

Bill Irion, Michael Gunson – Jet Propulsion Laboratory Michael Newchurch – U. Alabama at Huntsville Sunmi Na – Pusan National University With thanks to Sung-Yung Lee, Bob Oliphant and SHADOZ team

AIRS Team Meeting - March XX, 2006

AIRS in qualitative agreement with TES in ozone regions > 100ppb

May 21/2005 270 mb

Filled dots are TES observations

Ozone volume mixing ratio x109

AIRS-TES relative difference

But is AIRS skill in ozone from regression?

Current V4 AIRS ozone and ECMWF compared to coincident sondes

AIRS O₃ a priori (regression) tuned to ECMWF.

Like ECMWF, AIRS is too high in troposphere and too low in stratosphere; column OK.

Would reducing the damping help? How would channel changes affect the retrieval with changed damping?

Location map

Matchups within 100 km and 3 hrs of sonde launch

Decreasing damping worsens results in upper trop/lower strat with current channel selection.

...so let's give the retrieval more information

Adding channels at current damping doesn't help.

Adding channels and decreasing damping gives mixed results

- helps in tropical lower
 stratosphere
 (Ascension & Natal).
- mixed results in subtropics at Hilo (but only a couple of sondes)
- -worse results in midlatitude lower stratosphere (Huntsville & Chesapeake).

No regression/More lines/Decreased damping

Same a priori as used in cloud-clearing.

Diminishing returns? Or problems in CC radiance uncertainties?

But...any changes would be suboptimal without reliable uncertainties in radiances!

$$\chi = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{obs_i - calc_i}{NESR_i} \right)^2}$$

If $\chi >> 1$, bad fits or underestimating noise

If $\chi \ll 1$, fitting noise or overestimating noise

$$\chi = 0.28$$

$$\chi = 1.03$$

$$\chi = 2.33$$

Systematic biases in radiance uncertainties

Sept 6/02 V4 Granule 176

$$\chi = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{obs_i - calc_i}{NESR_i} \right)^2}$$

If $\chi >> 1$, bad fits or underestimating noise

If $\chi \ll 1$, fitting noise or overestimating noise

χ vs error in BT should be a horizontal line!

Mean BT error for ozone radiances

Conclusions

- Need for reliable uncertainties in cloudcleared radiances.
- Significant tradespace in ozone channel selection with decreased damping.
- Need to determine new regression coefficients (work in progress).
- Re-evaluate channel selection and damping parameter with new coefficients.